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Introduction

Development in technology and dependence of many scientific
investigations has led to rapidly increasing volume of data.

Characteristic of the data: high in dimension and sample size.
Applications in genomics, health sciences, economics, finance,
climatology, ...

In this talk I will consider the case that dimension(p) can grow
exponentially in the sample size(n) and I will present the
methodologies proposed in Fan and Lv (2008) and Fan, Samworth,
and We (2009).
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Examples

Disease classification using microarray gen expression.

# of arrays on the order of tens
# of gen expression profile on the order of tens of thousands.

When interactions are considered for instance in portfolio allocation
among two thousand stocks, the covariance matrix involves over two
million parameters.

Analysis of high resolution images.
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Model

Suppose X1, ...,Xn ∈ Rp are i.i.d. predictors.

Y ∈ Rn is the response.

Consider linear model Y = Xβ + ε where:
X = [X1, ..,Xn] , ε ∈ Rn is an n-vector of i.i.d random error.

Goal: estimate β.
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Difficulties

XTX is huge and singular.

Maximum sample correlation between predictors can be large despite
that predictors are independent.

Unimportant predictor may be highly correlated with important
predictors which usually increases with dimensionality.

Unimportant predictors can be highly correlated with the response
due to correlation with an important predictor.

Population covariance matrix may be ill-conditioned as n grows.

Minimum non-zero absolute coefficient |βj | may decay with n and fall
close to the noise level.

Noise accumulation in high dimensional prediction.
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One way to overcome the problems

Assume the p-dimensional regression parameters are sparse(with many
components being zero).
E.g. in Genomic studies in general it is believed that only a fraction of
molecules are related to biological outcomes.
This suggests to use variable selection procedures such as: LASSO or
SCAD, .... Or in other words, use penalized least squares with suitable
choice of penalty, i.e.

β̂PLS = argminβ0,βn
−1

n∑
i=1

(Yi − β0 − XT
i β)2 +

p∑
j=1

pλ(|βj |).
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A remedy for Ultra-high dimension

But commonly used variable selection procedures work when dimension is
in the same order as sample size.

idea:
First, reduce the dimensionality from ultra high (log(p) = O(na) for
some a > 0) to moderate scale (d = n − 1 or d = bn/ log(n)c).
Second, use a well developed variable selection technique.

Source: Fan and Lv (2008)
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Large Scale Screening

Independence Screening: Ranking features according to marginal utility.
Each covariate is used independently as a predictor to decide its usefulness
for predicting the response.

Correlation ranking(Fan and Lv (2008))

Two sample test(Story and Tibshirani(2003))

Feature ranking using generalized correlation(Hall and Miller(2009))

Using marginal bridge estimators(Huang, Horowitz and Ma(2008))

Using tilting methods and empirical likelihood(Hall, Titterington and
Xue(2009)).

Sure Independence Screening: All the important variables survive after
applying variable screening procedure with probability tending to 1.
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Correlation Ranking

Ranking features according to the magnitude of its sample
correlation with the response variable. I.e. Consider component
wise regression coefficient β̂ = (β̂1, . . . , β̂p)T = XTY , where each
column of X has been centered and standardized.
Take the submodel to be :

Md = {1 ≤ j ≤ p : |β̂j | is among the first d largest of all}

d ≤ n e.g. d = n − 1 or d = n
log(n) .

Rank features according to the marginal loss

Lj = min
β0,βj

n−1
n∑

i=1

(Yi − β0 − XT
ij βj)

2

and choose features corresponding to the first d smallest of the
marginal losses Lj .
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Drawbacks

It is possible that:

some unimportant predictors that are highly correlated with an
important predictor can have higher priority for being selected.

an important predictor that is marginally uncorrelated but jointly
correlated with the response cannot be picked up.

In general collinearity between predictors add difficulty to variable selection.
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Iterative correlation learning

To overcome those problems apply iteratively correlation learning as
follow:

Select a subset of k1 variables A1 = {Xi1 , . . . ,Xik1
} using an

SIS-based model selection such as SIS-Lasso.

Let r1 be the residual after regressing Y on {Xi1 , . . . ,Xik1
}.

Treat r1 as the new responses and apply the same procedure to the
remaining p − k1 variables to obtain A2 = {Xj1 , . . . ,Xjk2

}.
Continue until A = ∪`s=1As has size d < n, then apply a moderate
scale method such as Lasso or SCAD.
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Does it address our concerns?

Weakens the priority of unimportant variables that are highly
correlated with the response through Xi1 , . . . ,Xik1

. ( Since the
remaining covariates in each step have lower correlation with the
residuals than with the original response.)

Gives a chance to those important predictors that are missed in the
previous step to be selected.
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Beyond linear model

In the more general pseudo-likelihood framework we can perform screening
by choosing covariates with lowest marginal loss

Lj = min
β0,βj

n−1
n∑

i=1

L(Yi , β0 + XT
ij βj), j = 1, . . . , p,

for suitable loss function L, followed by moderated scale variable selection
procedure s.t. k1 of them are retained.

In logistic regression model

L(Yi , β0,Xijβj) =
n∑

i=1

{log(1 + eβ0+Xijβj )− Yi (β0 + Xijβj)}.

In classification using support vector machine

L(Yi , β0 + Xijβ) = {1− Yi (β0 + Xijβ)}+.
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Iterative feature selection

Apply SIS followed by a penalized (pseudo)-likelihood method to

select a subset M̂1 ⊂ {1, . . . , p}.
order {L(2)j : j ∈ M̂c

1} where

L
(2)
j = min

β0,βM̂1
,βj

n−1L(Yi , β0 + XT
i ,M̂1

βM̂1
+ Xijβj),

and add indexes of k2 smallest of them to M̂1. Then apply a
(pseudo)-likelihood method to select a subset M̂2 ⊂ {1, . . . , p}.
Repeat until M̂` either reaches a prescribed size d or satisfies
M̂` = M̂`−1.
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Reduction of False Selection Rate

Let A = {j : βj 6= 0}.
Split the sample into two halves at random.

Apply SIS or (I)SIS separately to the data in each partition to select
two sets of active indices Â1 and Â2.

First Variant: Consider Â1 ∩ Â2 as an estimate of A.

Second Variant: Recruit as many features into equal-sized sets of
active indices Ã1 and Ã2 as are required to ensure that the
intersection Ã1 ∩ Ã1 has d elements.
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Software

This two stage variable selection has been implemented in R by Jianqing
Fan, Yang Feng, Diego Franco Saldana, Richard Samworth, Yichao Wu.
To install and call the library do the following:

install.packages(”SIS”)

library(”SIS”)

Then simply call the function SIS.
SIS(x, y, family=”binomial”, penalty=”lasso”, tune=”bic”)
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Neuroblastoma data

Study consists of 251 patients of the German Neuroblastoma Trials
diagnosed between 1989 and 2004.

At diagnosis, patients‘ ages range from 0 to 296 months with a
median age of 15 months.

Interested in predicting if each patient survived 3 years after the
diagnosis of Neuroblastoma.

Goal: develop a gen expression based classification rule for
Neuroblastoma patients and obtain a view on which set of genes is
responsible for Neuroblastoma.

p = 10707 genes.

125 Randomly selected subjects in the training set and remaining
subjects in the testing set.
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Analysis (Fan, Samworth, and We (2009))

For the initial screening 50 variables are selected for (I)SIS methods.

From table below we can see that (I)SIS methods outperforms
LASSO in the sense that they used fewer predictors while giving
smaller or equal testing error.

Method SIS (I)SIS
var2-
SIS

var2-
(I)SIS

LASSO

No. of predictors 5 23 10 12 57

Testing error 19/114 22/114 22/114 21/114 22/114

In var2-(I)SIS, data set is randomly partitioned into two groups. The (I)SIS
is applied to both and equal sized sets of active indices A(1) and A(2) are
selected to ensure that A(1) ∩A(2) has a pre-specified number of elements.
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Thank You!
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