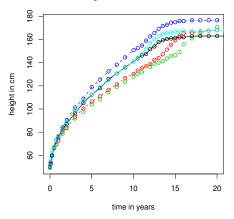
An Introduction to Functional Data Analysis

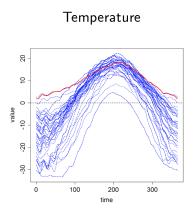

Cody Carroll

University of California, Davis

June 1, 2018

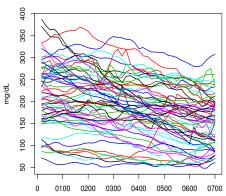
What is functional data?

What are the striking features of the following sets of data?



Heights of Swiss Children

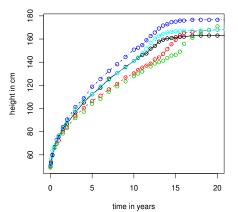
Sample of human growth curves recorded in the Zürich Longitudinal Study.


Examples

Temperatures (in $^\circ\text{C})$ over the course of a year measured at thirty-five weather stations across Canada.

Examples

An individual's blood glucose levels measured over 7-hour window for 59 days.



Glucose levels across 7 hours

hour

What is functional data?

What are the striking features of the following data?

Heights of Swiss Children

Features:

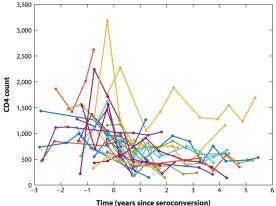
- similar shape
- repeated observations
- frequency
- smoothness

• Functional Data: A sample of random functions, with one function per subject.

- These functions can be curves (1D), images (2D or 3D), or have an higher number of components.

• Characteristics of functional data:

(i) The "unit" of functional data is a function, $X_i(t)$. (ii) Functions are (in theory) ∞ -dimensional data. There are an infinite number of time points to observe the function on. In theory, data $X_1, ..., X_n$ are i.i.d. copies of a random function X(t). In practice, the observed data for subject *i* is actually:

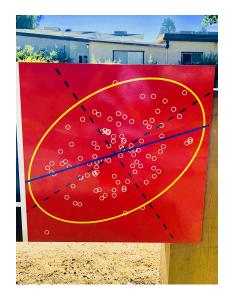

$$Y_{ij} = X_i(t_{ij}) + e_{ij}, \ \ j = 1, ..., n_i,$$

where $X_i(t)$ is a smooth random function and e_{ij} are independent realizations of random noise for all i, j.

- Regular functional data All subjects are measured at the same time grid, t₁,..., t_m ⇒ (often high-dim.) multivariate data.
- Irregular functional data The measurement schedule for subject *i* is $t_{i1}, ..., t_{in_i} \implies$ longitudinal data.

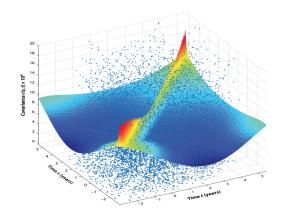
Longitudinal Example

Irregularly recorded CD4 T lymphocyte count data for 25 HIV+ patients.

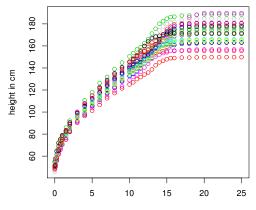

- Estimating the sample functions from finitely many observed points
- Identifying important sources of patterns/variation among the data
- Other more complicated questions

We need a statistical tool to accomplish these tasks. Let's take some inspiration from outside...

Outside this building


Principal Components Analysis (PCA)

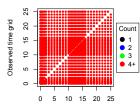
- PCA takes multivariate data (in R^p) and finds the orthogonal "directions" (vectors) which best explain the variation in the data
- Each observation gets a "score" per direction, indicating how far in that direction the observation lies
- Often we only need 2 or 3 "directions" and their scores for an observation to recreate the data accurately, even when *p* is large
- Optional: mathematically, these directions are the eigenvectors of the sample covariance matrix of the data


Extend PCA to FPCA

- We want to find the "directions" which explain variation for functional data now
- In functional data, we have covariance surfaces instead of covariance matrices

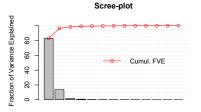
- With some math we can obtain the best "directions" from the sample covariance surface which are called eigenfunctions
- Each observation will receive one score per eigenfunction, like before
- Often we only need 2 or 3 eigenfunctions to explain most of the variation, like in PCA
- Also, these eigenfunctions often have physical interpretations

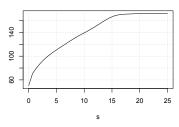
25 human growth curves recorded in the Zürich Longitudinal Study.


Heights of Swiss Children: Raw Data

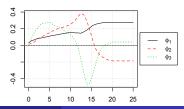
time

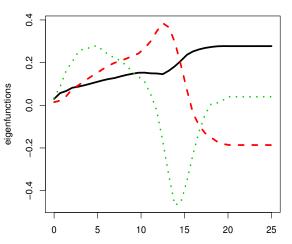
some math later...


FPCA Example

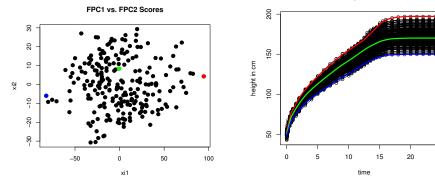

Using the FPCA() function in the fdapace package:

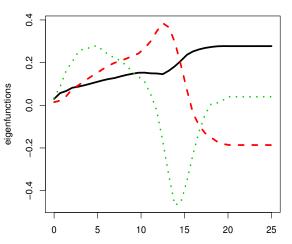
Design Plot


Observed time grid

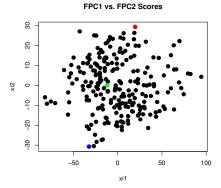


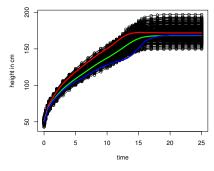
Mean Function




First 3 Eigenfunctions

time


Curves with High/Low FPC1 Scores


25

First 3 Eigenfunctions

time

Curves with High/Low FPC2 Scores

- Functional regression:
 - function-on-function
 - function-on-scalar
 - scalar-on-function
- Questions of inference
- Functional registration
- Density estimation

Gasser, T., Köhler, W., Müller, H.-G., Kneip, A., Largo, R., Molinari, L., and Prader, A. (1984a),

Velocity and Acceleration of Height Growth Using Kernel Estimation,

Annals of Human Biology, 11, 397411.

Hooker, G.

Functional Data Analysis: A Short Course.

```
Lu, X. and Marron, J. S. (2013),
```

Principal nested spheres for time warped functional data analysis, *Preprint.*

Wang, J.-L. and Chiou, J.-M. and Müller, H.-G. (2016), Review of Functional Data Analysis, arXiv preprint.