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Introduction

Kernel methods are a general class of procedures used to extend simple
linear techniques into the non-linear setting.

They have seen use in a wide range of statistical fields:

Classification

Handwriting recognition

Bioinformatics

Image recognition
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Introduction

Depending on the implimentation, kernel methods offer sufficient flexibility
to adapt to a wide range of data, while utilizing relatively simple linear
methods for a core foundation.

Kernel methods are computationally efficient, and perform competitively in
classification accuracy and other metrics.
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Linear Separability

Goal:

Use existing data to classify new observation.

Fast, simple method
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Linear Separability
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Linear Separability
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Linear Separability

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 8 / 29



Linear Separability
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Linear Separability
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Linear Separability
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Linear Separability
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Linear Separability

Example 3
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Feature Vectors

General ideas:

Applying transformations to data turns a simple linear method into a
more complex non-linear method. A non-linear transformation
(quadratic, cubic, exponential, etc.) can better match the structure
present in the data.

Mapping into higher dimensions than the original generally yields an
increase in separability, making it easier to distinguish data from
multiple classes.
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Feature Vectors

A feature vector is any form of new data gained from a transformation of
the original.

x → φ (x)

Feature vectors can either be tailored to fit a specific dataset, or a more
flexible method can be applied generally.
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Support Vector Machines

A Support Vector Machine is a method that seeks to find the “best” linear
separator between two sets of data.
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Support Vector Machines

The “best” linear separator in this case is the line/plane/hyperplane that
maximizes the margin to the observations. The margin is the minimum
distance between the decision boundary and the closest point of data in
each class. The resulting boundary is both relatively as distant as possible
from the training data and balanced towards each class.
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SVM Formulation

It has been shown that SVM is equivalent to the following optimization
problems:

Optimization

max
γ,w ,b

γ

s.t. y (i)
(
wT x (i) + b

)
≥ γ , i = 1, ...,m

||w || = 1

Each x (i) is a training observation and y (i) is a label (-1, 1) to denote the
group to which the observation belongs.

Note: we must optimize over a choice of direction w , which becomes
computationally intractible in high dimensions.
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SVM Formulation

An alternative second form of the optimization problem has some unique
benefits.

Optimization

max
α

m∑
i=1

αi −
m∑

i ,j=1
y (i)y (j)αiαj〈x (i), x (j)〉

s.t. αi ≥ 0 , i = 1, ...,m
m∑
i=1

αiy
(i) = 0

Here, we only have m parameters over which to optimize, and the only
information required is the inner product K

(
x (i), x (j)

)
= 〈x (i), x (j)〉.

Explicit vectors x (i) not necessarily required!
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Kernel Trick

Many methods based on seemingly complicated, high-dimensional
optimizations can be significantly reduced in complexity, down to an easily
computable form.
- Support vector machines are a key example.

This allows us to use the convenient properties of feature vectors in high
dimensions without suffering the consequences in computation.

- So called “Kernel trick”
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Kernel Trick

Method:

1 Map data onto feature vectors. (xi , ..., xn)→ (φ (xi ) , φ (xi )). The
new vectors could have very high (or infinite) dimensions.

2 Calculate dot products 〈·, ·〉
3 Perform optimization

- If a convenient form for 〈φ (x) , φ (y)〉 exists, we can combine the first
two steps, and perform the optimization without explicitly calculating the
feature vector.
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Kernel Trick

Kernel

A function that can be written as

K (x , y) = 〈φ (x) , φ (y)〉

is called a kernel, and are a measure of “similarity” between datapoints.

Popular kernels: e−
1
2γ
||x−y ||2 , ||x · y + 1||d

- Choice of kernel affects the flexibility of the final method
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Kernel Trick

Gaussian kernel SVM
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Linear Regression Classifiers

Let y be a new observation compared against several classes:

x(1,1), ..., x(1,m1)
...

x(k,1), ..., x(k,mk )

Assign y to group i if y is “closest” to that group.

Alternatively, if the members of group i can be used to
“best-approximate” y .
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Linear Regression Classifiers

Linear Regression Classifier :

1 Approximate y as a linear combination of the members in group i .

y ≈ Aiαi

Ai =
[
x(i ,1), ..., x(i ,mi )

]
.

2 The least squares solution is
(
AT
i Ai

)−1
AT
i y = ŷi .

3 Assign y to group i if ||y − ŷi || is smallest.
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Kernelized LASSO Classifier

Kernelized LASSO Classifier :

1 Approximate y as a linear combination of the members in group i .

y ≈ Aiαi

Ai =
[
x(i ,1), ..., x(i ,mi )

]
.

2 The KLASSO solution ŷi solves the optimization problem:

KLASSO

minimize ||y − Kα||2 + λ||α||1

where K is a matrix with Kij = K
(
x(i), x(j)

)
.

3 Assign y to group i if ||y − ŷi || is smallest.
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Kernelized LASSO Classifier

Benefits:

Sparsity - only a select number of examples will be used for
classification, useful for large, diverse training classes.

Nonlinearity

Computationally efficient
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Conclusion

Kernel methods offer a way of extending linear methods into the non-linear
setting.

They offer flexibility to adapt existing methods to more complex data,
while maintaining computational efficiency.

A wide variety of methods are available (scikit-learn, R/e1071)

- Caveat: Recent developments in optimization (stochastic gradient
descent) have made explicitly calculating feature vectors more promising
when scaling to large data sizes.
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