
The Kernel Trick and its Applications

Benjamin Roycraft

University of California

btroycraft@ucdavis.edu

June 1, 2018

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 1 / 29

Overview

1 Introduction

2 Background
Linear Separability
Feature Vectors
Support Vector Machines

3 Kernel Trick

4 Regression Classifiers

5 Conclusion

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 2 / 29

Introduction

Kernel methods are a general class of procedures used to extend simple
linear techniques into the non-linear setting.

They have seen use in a wide range of statistical fields:

Classification

Handwriting recognition

Bioinformatics

Image recognition

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 3 / 29

Introduction

Depending on the implimentation, kernel methods offer sufficient flexibility
to adapt to a wide range of data, while utilizing relatively simple linear
methods for a core foundation.

Kernel methods are computationally efficient, and perform competitively in
classification accuracy and other metrics.

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 4 / 29

Linear Separability

Goal:

Use existing data to classify new observation.

Fast, simple method

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 5 / 29

Linear Separability

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 6 / 29

Linear Separability

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 7 / 29

Linear Separability

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 8 / 29

Linear Separability

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 9 / 29

Linear Separability

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 10 / 29

Linear Separability

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 11 / 29

Linear Separability

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 12 / 29

Linear Separability

Example 3

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 13 / 29

Feature Vectors

General ideas:

Applying transformations to data turns a simple linear method into a
more complex non-linear method. A non-linear transformation
(quadratic, cubic, exponential, etc.) can better match the structure
present in the data.

Mapping into higher dimensions than the original generally yields an
increase in separability, making it easier to distinguish data from
multiple classes.

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 14 / 29

Feature Vectors

A feature vector is any form of new data gained from a transformation of
the original.

x → φ (x)

Feature vectors can either be tailored to fit a specific dataset, or a more
flexible method can be applied generally.

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 15 / 29

Support Vector Machines

A Support Vector Machine is a method that seeks to find the “best” linear
separator between two sets of data.

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 16 / 29

Support Vector Machines

The “best” linear separator in this case is the line/plane/hyperplane that
maximizes the margin to the observations. The margin is the minimum
distance between the decision boundary and the closest point of data in
each class. The resulting boundary is both relatively as distant as possible
from the training data and balanced towards each class.

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 17 / 29

SVM Formulation

It has been shown that SVM is equivalent to the following optimization
problems:

Optimization

max
γ,w ,b

γ

s.t. y (i)
(
wT x (i) + b

)
≥ γ , i = 1, ...,m

||w || = 1

Each x (i) is a training observation and y (i) is a label (-1, 1) to denote the
group to which the observation belongs.

Note: we must optimize over a choice of direction w , which becomes
computationally intractible in high dimensions.

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 18 / 29

SVM Formulation

An alternative second form of the optimization problem has some unique
benefits.

Optimization

max
α

m∑
i=1

αi −
m∑

i ,j=1
y (i)y (j)αiαj〈x (i), x (j)〉

s.t. αi ≥ 0 , i = 1, ...,m
m∑
i=1

αiy
(i) = 0

Here, we only have m parameters over which to optimize, and the only
information required is the inner product K

(
x (i), x (j)

)
= 〈x (i), x (j)〉.

Explicit vectors x (i) not necessarily required!

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 19 / 29

Kernel Trick

Many methods based on seemingly complicated, high-dimensional
optimizations can be significantly reduced in complexity, down to an easily
computable form.
- Support vector machines are a key example.

This allows us to use the convenient properties of feature vectors in high
dimensions without suffering the consequences in computation.

- So called “Kernel trick”

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 20 / 29

Kernel Trick

Method:

1 Map data onto feature vectors. (xi , ..., xn)→ (φ (xi) , φ (xi)). The
new vectors could have very high (or infinite) dimensions.

2 Calculate dot products 〈·, ·〉
3 Perform optimization

- If a convenient form for 〈φ (x) , φ (y)〉 exists, we can combine the first
two steps, and perform the optimization without explicitly calculating the
feature vector.

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 21 / 29

Kernel Trick

Kernel

A function that can be written as

K (x , y) = 〈φ (x) , φ (y)〉

is called a kernel, and are a measure of “similarity” between datapoints.

Popular kernels: e−
1
2γ
||x−y ||2 , ||x · y + 1||d

- Choice of kernel affects the flexibility of the final method

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 22 / 29

Kernel Trick

Gaussian kernel SVM

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 23 / 29

Linear Regression Classifiers

Let y be a new observation compared against several classes:

x(1,1), ..., x(1,m1)
...

x(k,1), ..., x(k,mk)

Assign y to group i if y is “closest” to that group.

Alternatively, if the members of group i can be used to
“best-approximate” y .

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 24 / 29

Linear Regression Classifiers

Linear Regression Classifier :

1 Approximate y as a linear combination of the members in group i .

y ≈ Aiαi

Ai =
[
x(i ,1), ..., x(i ,mi)

]
.

2 The least squares solution is
(
AT
i Ai

)−1
AT
i y = ŷi .

3 Assign y to group i if ||y − ŷi || is smallest.

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 25 / 29

Kernelized LASSO Classifier

Kernelized LASSO Classifier :

1 Approximate y as a linear combination of the members in group i .

y ≈ Aiαi

Ai =
[
x(i ,1), ..., x(i ,mi)

]
.

2 The KLASSO solution ŷi solves the optimization problem:

KLASSO

minimize ||y − Kα||2 + λ||α||1

where K is a matrix with Kij = K
(
x(i), x(j)

)
.

3 Assign y to group i if ||y − ŷi || is smallest.

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 26 / 29

Kernelized LASSO Classifier

Benefits:

Sparsity - only a select number of examples will be used for
classification, useful for large, diverse training classes.

Nonlinearity

Computationally efficient

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 27 / 29

Conclusion

Kernel methods offer a way of extending linear methods into the non-linear
setting.

They offer flexibility to adapt existing methods to more complex data,
while maintaining computational efficiency.

A wide variety of methods are available (scikit-learn, R/e1071)

- Caveat: Recent developments in optimization (stochastic gradient
descent) have made explicitly calculating feature vectors more promising
when scaling to large data sizes.

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 28 / 29

References

V. Roth (2004)

The generalized LASSO

IEEE Transactions on Neural Networks 15(1), 16 – 28.

J. Xu and J. Yin (2013)

Kernel least absolute shrinkage and selection operator regression classifier for
pattern classification

IET Computer Vision 7(1), 48 – 55.

Cortes, C. & Vapnik (1995)

Support-Vector Networks

V. Machine Learning 20(273)

Benjamin Roycraft (UC Davis) Kernel Trick June 1, 2018 29 / 29

	Introduction
	Background
	Linear Separability
	Feature Vectors
	Support Vector Machines

	Kernel Trick
	Regression Classifiers
	Conclusion

